Processing math: 100%
\ie\cf
\newcommand{\eqdef}{\mathbin{\stackrel{\rm def}{=}}}
  \newcommand{\R} % real numbers
  \newcommand{\N}} % natural numbers
  \newcommand{\Z} % integers
  \newcommand{\F} % a field
  \newcommand{\Q} % the rationals
  \newcommand{\C}{\mathbb{C}} % the complexes
  \newcommand{\poly}}
  \newcommand{\polylog}}
  \newcommand{\loglog}}}
  \newcommand{\zo}{\{0,1\}}
  \newcommand{\suchthat}
  \newcommand{\pr}[1]{\Pr\left[#1\right]}
  \newcommand{\deffont}{\em}
  \newcommand{\getsr}{\mathbin{\stackrel{\mbox{\tiny R}}{\gets}}}
  \newcommand{\Exp}{\mathop{\mathrm E}\displaylimits} % expectation
  \newcommand{\Var}{\mathop{\mathrm Var}\displaylimits} % variance
  \newcommand{\xor}{\oplus}
  \newcommand{\GF}{\mathrm{GF}}
  \newcommand{\eps}{\varepsilon}
  \notag
\no
Back to TGINF

Public verifiability in the quantum setting

Speaker: Miryam Mi-Ying Huang
Title: Public verifiability in the quantum setting
Date: 29 Nov 2022 17:45-19:15 EST
Location: SEC Level 3 NW Terrace
Food: Thai

In this talk, I will discuss some theoretical interests of public variability by starting with a classical toy example, called delivery man problem. Then, I will transform the delivery man problem into a quantum message transmission problem and then discuss the difficulty of doing this in the quantum world. Finally, I will present a cryptographic primitive Auditable Quantum Authentication (AQA) to deal with the quantum-version delivery man problem.