Processing math: 100%
\ie\cf
\newcommand{\eqdef}{\mathbin{\stackrel{\rm def}{=}}}
  \newcommand{\R} % real numbers
  \newcommand{\N}} % natural numbers
  \newcommand{\Z} % integers
  \newcommand{\F} % a field
  \newcommand{\Q} % the rationals
  \newcommand{\C}{\mathbb{C}} % the complexes
  \newcommand{\poly}}
  \newcommand{\polylog}}
  \newcommand{\loglog}}}
  \newcommand{\zo}{\{0,1\}}
  \newcommand{\suchthat}
  \newcommand{\pr}[1]{\Pr\left[#1\right]}
  \newcommand{\deffont}{\em}
  \newcommand{\getsr}{\mathbin{\stackrel{\mbox{\tiny R}}{\gets}}}
  \newcommand{\Exp}{\mathop{\mathrm E}\displaylimits} % expectation
  \newcommand{\Var}{\mathop{\mathrm Var}\displaylimits} % variance
  \newcommand{\xor}{\oplus}
  \newcommand{\GF}{\mathrm{GF}}
  \newcommand{\eps}{\varepsilon}
  \notag
\no
Back to TGINF

Entropy Flattening

Speaker: Juspreet
Title: Entropy Flattening
Date: 16 Mar 2020 6:00pm-7:00pm
Location: Zoom
Food: Self-prepared
Zoom link: https://harvard.zoom.us/j/322381213

Abstract: We introduce and discuss the problem of Entropy Flatenning for n-bit random variables. We will talk about the recent developments of a lower bound on query complexity (in the black-box model) by CGVZ’17. We will also discuss the difficulties in obtaining a lower bound on the seed-length (randomness) to the flattening algorithm. Time permitting, we discuss relationships with the SDU-k pproblem in detail.